ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/02 Date Received: 09/19/02

Project: Metro Self Monitor, PO# M68717

Date Extracted: 09/30/02 Date Analyzed: 09/30/02

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLE FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Results Reported as mg/L (ppm)

Sample ID Chromium Copper Nickel	<u>Zinc</u>
주요 아시 얼마 그림 사람 네가 사를 가는 것이 모든 사람들이	
M68717 0.90 1.1 0.91	<0.10
Method Blank <0.05 <0.05 <0.05	<0.10

ENVIRONMENTAL CHEMISTS

Date of Report: 10/03/02 Date Received: 09/19/02

Project: Metro Self Monitor, PO# M68717

QUALITY ASSURANCE RESULTS FROM TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Laboratory Code: 209200-01 (Duplicate)

N. LICIAL T								Relativ	'e		
fra Kind		Reporting		Sample	I	uplicat	te	Percen	it A	Acceptar	nce
Analyte	. 1 47, 4 40,	Units	A. S. V.	Result	2091 2 004	Result	Γ	Differen	ice	Criteri	a
Chromium	n	ng/L (ppm)		< 0.05		< 0.05		nm		0-20	7.15.
Copper	n	ng/L (ppm)		< 0.05		< 0.05		nm		0-20	
Nickel	n	ng/L (ppm)		< 0.05		< 0.05		nm		0-20	
Zinc	n	ng/L (ppm)		0.83		0.84		1		0-20	
	Chromium Copper Nickel	Analyte Chromium n Copper n Nickel n	Chromium mg/L (ppm) Copper mg/L (ppm) Nickel mg/L (ppm)	Analyte Units Chromium mg/L (ppm) Copper mg/L (ppm) Nickel mg/L (ppm)	Analyte Units Result Chromium mg/L (ppm) <0.05	Analyte Units Result Chromium mg/L (ppm) <0.05	Analyte Units Result Result Chromium mg/L (ppm) <0.05	Reporting Sample Duplicate Analyte Units Result Result I Chromium mg/L (ppm) <0.05	Reporting Analyte Sample Units Duplicate Result Percent Result Chromium mg/L (ppm) <0.05	Reporting Analyte Sample Units Duplicate Result Percent Analyte Analyte Percent Percent Result Analyte Analyte Percent Result Analyte Analyte	Analyte Units Result Result Difference Criterion Chromium mg/L (ppm) <0.05

Laboratory Code: 209200-01 (Matrix Spike)

	Reporting	Spike	Sample	% Recove	ery % Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/L (ppm)	2	< 0.05	95	93	80-120	2
Copper	mg/L (ppm)	2	< 0.05	98	96	80-120	2
Nickel	mg/L (ppm)	4	< 0.05	97	95	80-120	2
Zinc	mg/L (ppm)	2	0.83	100	100	80-120	0

Laboratory Code: Laboratory Control Sample

	. —	on or conner	~ .			
	Reporting	Spike	% Recov	ery % Reco	very Acceptance	ce RPD
Analyte	Units	Level	LCS	LCS	D Criteria	(Limit 20)
Chromium	mg/L (ppm)	2	100	96	80-120	4
Copper	mg/L (ppm)	2	100	96	80-120	4
Nickel	mg/L (ppm)	4	99	95	80-120	4
Zinc	mg/L (ppm)	2	107	105	80-120	2

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

October 3, 2002

DUPLICATE COPY

INVOICE # 02ACU1003-2

Accounts Payable Alaskan Copper Works 628 South Hanford Seattle, WA 98134

RE: Project Metro Self Monitor, PO# M68717 - Results of testing requested by Gerry Thompson for material submitted on September 19, 2002.

FEDERAL TAX ID #(b) (6)

209138 SAI	MPLE CHAIN OF CUSTODY	_	ME 9/19/02 B
Send Report TO BEAD Thompson	SAMPLERS (stending)		Page # of TURNAROUND TIME
ALAGUAL Proper Libration	PROJECT NAME/NO. METRO SELS Monitur	PO# M& 717	☐ Standard (2 Weeks) ☐ RUSH Rush charges authorized by:
City, State, ZIP SECTUS LLA Phone # 206-382-9379 Fax # 206-382-9509	REMARKS		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

										ANA	LYS	ES R	EQU	ESTI	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	OR, CU, NIZO	/		e e		Notes	
m68717	01	9/19/02	10:00	HO	/							1						
									## T									
					ā													
	<u> </u>														`			
																		,
	-				100													
3																		
•																		

Fried	lman	& Bruye	a, Inc.
3012	16th	Avenue	West
			4

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE TIME
Relinguisted by:	G. Thompson	ACU	11:23, 1918/0
Received by Cu	Micheel Edahl	PiBine	12:00 m 9/19/02
Relinquished by:	,		
Received by:			

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

October 3, 2002

Gerry Thompson, Project Manager Alaskan Copper Works 628 South Hanford Seattle, WA 98134

Dear Mr. Thompson:

Included are the results from the testing of material submitted on September 19, 2002 from your Metro Self Monitor, PO# M68717 project. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures ACU1003R.DOC